Пороговое ограничение

Пороговое ограничение по яркости - один из распространенных методов сегментации в робототехнике. Это обусловлено тем, что изображения объектов манипулирования часто имеют достаточно однородную яркость и резко выделяются из фона.

Наиболее просто пороговая обработка осуществляется в случае, когда заранее известно, что изображение состоит из одного объекта (s = 1) и фона, причем яркость точек объекта находится в пределах [Т1, Т2], а яркость точек фона либо меньше Т1 либо больше Т2. В этом случае каждой точке (i, j) D сопоставляется метка 1, если В (і, j) [Т1, Т2], и метка 0 в противном случае. Произведенная таким образом грубая сегментация является окончательной вследствие условия s = 1.

В ряде задач робототехники пороги яркости объектов и фона неизвестны, поэтому метод порогового ограничения следует дополнить способом определения порогов. Определение порогов обычно связано с анализом гистограмм. Гистограмма - это отображение из множества {а,..., в} значений яркости в множество натуральных чисел, каждому b {а,..., в} сопоставляется число точек (m, n) D, для которых (m,n) = b.

При отсутствии априорной информации указанных двух типов существует подход к определению порогов, связанный с нахождением не только глобального максимума гистограммы, но и других ее экстремумов. Допустим, что изображение состоит из фона и одного объекта. При постоянной яркости фона и объекта гистограмма имеет простейший вид. Такой вид гистограммы в реальной ситуации далек от действительности, более реальная гистограмма имеет более сложный вид.

Центроидное связывание

Гистограмма изображения является его глобальной характеристикой - при ее формировании не используется понятие близости элементов изображения. Поэтому методы, рассмотренные выше, являются глобальными. Перейдем к локальным методам сегментации, получившим название наращивание областей. Алгоритмы наращивания областей используют информацию о связности объектов и основаны на рекуррентном способе разметки точек. На шаге с номером k размечаются те и только те точки, которые имеют соседей из числа размеченных на предыдущем шаге (k - 1). Разметка точек осуществляется согласно некоторому критерию однородности. Конкретные алгоритмы различаются выбором критерия однородности, способом просмотра точек и выбором начальных «стартовых» точек, размечаемых на нулевом шаге.

В литературе известно два основных подхода к стратегии выбора стартовых точек и порядка просмотра остальных: центроидное связывание и слияние - расщепление областей.

Выбор стартовых точек и их меток в алгоритмах центроидного связывания должен быть, осуществлен так, чтобы никакие две точки с различными метками не были соединены.

Кроме того, если априорно известна некоторая информация о расположении объектов в поле зрения, то желательно стремиться к выполнению следующих требований:

- точки с различными метками должны соответствовать областям различных объектов;

- точки с одной меткой должны соответствовать одному и тому же объекту.

При выборе стартовых точек следует также учесть, что большую часть изображения в задачах робототехники, как правило, занимает фон, причем он является практически однородным. Поскольку в большинстве случаев достаточно получить грубую сегментацию (точки фона разметке могут не подлежать), то стартовые точки следует выбирать так, чтобы как можно меньшее число из них попало в область .

В случае слияния областей меняется частичная разметка, полученная на шаге k. Поэтому анализ большинства точек изображения следует провести заново. Конечно, необходимость повторных проходов по полю изображения резко увеличивает время реализации алгоритма.

Слияние областей - наиболее ответственные моменты алгоритмов центроидного связывания. Чем меньшее число раз возникает вопрос о слиянии областей, тем выше надежность алгоритма, тем меньше время, необходимое для реализации алгоритма. Число слияний областей зависит от правильности выбора порога Т и стартовых точек.

При цитировании материалов в рефератах, курсовых, дипломных работах правильно указывайте источник цитирования, для удобства можете скопировать из поля ниже:

Поделиться материалом